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Intro

• Method for solving linear rational expectations models.

• First eigenvalues.

• Solving linear di�erence equations.

• Solving system of linear di�erence equations.

• Blanchard-Kahn method

Matrix algebra

Eigenvectors and Eigenvalues

• Consider an n× n square matrix A.

• λ is an eigenvalue of A and x is an eigenvector of A if they satisfy the equation

Ax = λx

where x is a non-zero vector.

• To �nd an eigenvalues we can rewrite the above equation

Ax− λx = 0

(A− λI)x = 0

where I is an identity matrix.

• If [A− λI] is invertible, then x = [A− λI]−1 · 0 is a vector of zeros. To have a non-zero solution for x
a matrix [A− λI] needs to be non-invertible, i.e. singular.

• For [A − λI] to be non-invertible it needs to have a zero determinant (a square matrix is singular if
and only if its determinant is 0)

det(A− λI) = 0

and we can use this formula to �nd eigenvalues.

• Diagonalization (Jordan decomposition). Eigenvalues and eigenvectors can be used to diagonalize a
matrix. An n×n matrix A is diagonalizable if we can express the matrix as the product of an invertible
square matrix C and a diagonal matrix so that A = CΛC−1, where

� Λ is a diagonal matrix with the eigenvalues of A on the diagonal.

� the ith column of matrix C is an eigenvector corresponding to the ith eigenvalue of A.

• No, an n× n matrix A is diagonalizable if and only if its eigenvectors are linearly independent.
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Example 1.

• Consider a matrix A =

[
2 4
1 −1

]
, then

A− λI =

[
2 4
1 −1

]
− λ

[
1 0
0 1

]
=

[
2 4
1 −1

]
−
[
λ 0
0 λ

]
=

[
2− λ 4

1 −1− λ

]

det(A− λI) = (2− λ)(−1− λ)− 4 = 0

−2− 2λ+ λ+ λ2 − 4 = 0

λ2 − λ− 6 = 0

(λ− 3)(λ+ 2) = 0

Therefore we have two eigenvalues λ1 = 3 and λ2 = −2.

• Since eigenvectors are the solution to [A−λI]x = 0 and we have to eigenvalues we have to eigenvectors.
Start with λ1 = 3 [

2− λ 4
1 −1− λ

] [
x1
x2

]
= 0[

2− 3 4
1 −1− 3

] [
x1
x2

]
= 0[

−1 4
1 −4

] [
x1
x2

]
= 0

So

−x1 + 4x2 = 0

x1 − 4x2 = 0

So the eigenvector is

[
4a
a

]
.

• And for λ2 = −2 [
2− λ 4

1 −1− λ

] [
x1
x2

]
= 0[

4 4
1 1

] [
x1
x2

]
= 0

x1 + x2 = 0

4x1 + 4x2 = 0

So the eigenvector is

[
a
−a

]
.

• We are going to chose an eigenvectors such that one of the terms is set to 1, therefore we get two

eigenvectors

[
4
1

]
(corresponding to λ1 = 3) and

[
1
−1

]
(corresponding to λ2 = −2).
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• For a matix A =

[
2 4
1 −1

]
, with eigenvalues λ1 = 3 and λ2 = −2 and eigenvectors

[
4
1

]
(corre-

sponding to λ1 = 3) and

[
1
−1

]
(corresponding to λ2 = −2) we have

Λ =

[
3 0
0 −2

]
and

C =

[
4 1
1 −1

]
we have

C−1 =

[
0.2 0.2
0.2 −0.8

]
• Note

CΛC−1 =

[
4 1
1 −1

] [
3 0
0 −2

] [
0.2 0.2
0.2 −0.8

]
=

[
12 −2
3 2

] [
0.2 0.2
0.2 −0.8

]
=

[
12 · 0.2− 2 · 0.2 12 · 0.2 + 2 · 0.8
3 · 0.2 + 2 · 0.2 3 · 0.2− 2 · 0.8

]
=

[
2 4
1 −1

]
= A

Di�erence equations

Solution method

• Consider a simple di�erence equation
xt = αxt−1 + β

• First we �nd the steady state

x− αx = β

x =
β

1− α

• Let x̃t ≡ xt − x (which implies xt = x+ x̃t) then

x+ x̃t − α(x+ x̃t−1)− β = 0

x̃t + αx̃t−1 = 0

Guess
x̃t = Aλt

Substituting back

x̃t − αx̃t−1 = 0

Aλt − αAλt−1 = 0

λ− α = 0

λ = α

and
x̃t = Aαt
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Therefore
xt = x+Aαt

where x = β
1−α . To �nd A we need at least one value of xt, usually in economic applications we know

the initial conditions x0 (sometimes it is also a terminal condition), then

x0 =
β

1− α
+Aα0

A = x0 −
β

1− α

• So the solution is

xt =
β

1− α
+ (x0 −

β

1− α
)αt

xt = x0α
t +

β

1− α
(1− αt)

xt = x0α
t + β

1− αt

1− α

Note that method works for |α| 6= 1.

Stability

• The above equation is stable when |α| < 1, in which case

lim
t→∞

xt = lim
t→∞

(x0α
t + β

1− αt

1− α
) =

β

1− α

xt = αxt−1 + β

• The above equation is unstable when |α| > 1, in which case (technically speaking sometimes there may
be no limit becasue one subsequence converges to +∞ and the other to −∞)

lim
t→∞

xt = lim
t→∞

(x0α
t + β

1− αt

1− α
) = +∞ or −∞

Example 2.

• Consider a simple di�erence equation

xt − αxt−1 − 100 = 0

i.e. β = 100.

• First we �nd the steady state

x− αx = 100

x =
100

1− α

• Let x̃t ≡ xt − x (which implies xt = x+ x̃t) then

x+ x̃t − α(x+ x̃t−1)− 100 = 0

x̃t + αx̃t−1 = 0

Guess
x̃t = Aλt
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Substituting back

x̃t − αx̃t−1 = 0

Aλt − αAλt−1 = 0

λ− α = 0

λ = α

and
x̃t = Aαt

Therefore
xt = x+Aαt

where x = 100
1−α . To �nd A we need at least one value of xt, usually in economic applications we know

the initial conditions x0 (sometimes it is also a terminal condition). Suppose x0 = 100 then

x0 = 100 =
100

1− α
+Aα0

A = 100− 100

1− α
= 100

−α
1− α

xt = x0α
t + β 1−αt

1−α

• Consider di�erent values of α:

� α = 3 then

xt = 100 +
100

1− 3
− 100

1− 3
· 3t

xt = 50 + 50 · 3t

unstable, not oscillating (note xt > x for all t and limt→∞ xt =∞)

� α = 1
2 , then

xt = 100 +
100

1− 0.5
− 100

1− 0.5
·
(1

2

)t
xt = 300− 300 ·

(1

2

)t
stable, not oscillating (note xt > x for all t and limt→∞ xt = x = 300)

� α = − 1
2 , then

xt = 100 +
100

1− (−0.5)
− 100

1− (−0.5)
·
(
− 1

2

)t
xt = 166.67− 66.7 ·

(
− 1

2

)2
stable, oscillating (note if xt > x then xt+1 < x and limt→∞ xt = x = 166, 67)

� α = −3, then

xt = 100 +
100

1− (−3)
− 100

1− (−3)
·
(
− 3
)t

xt = 125− 25(−3)t

unstable, oscillating (note if xt > x then xt+1 < x and limt→∞ x2t = −∞ and limt→∞ x2t+1 =∞).

• Stability can be analyzed in phase diagrams.
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System of di�erence equations

Solution method

• Consider a system of di�erence equations

xt = Axt−1 + b

where A is n× n matrix and b is an n× 1 vector. We assume that A is diagonalizable.

• Since A is diagonalizable we can express it as A = CΛC−1.

xt = CΛC−1xt−1 + b

Multiplying both sides by C−1 we get

C−1xt = C−1CΛC−1xt−1 + C−1b

C−1xt = ΛC−1xt−1 + C−1b

De�ne x̄t = C−1xt we get
x̄t = Λx̄t−1 + C−1b

Since Λ is diagonal this becomes just a system of separate (independent) equations.

• To �nd the steady state of the system xt = Axt−1 + b set xt = xt−1 = x, which gives x = [I −A]−1b.

• The stability of the system depends on the eigenvalues.

• If all the eigenvalues are less than 1 in absolute value then the system is stable. If all the eigenvalues
are greater than 1 in absolute value then the system is unstable. If at least one eigenvalue is less than
1 in absolute value the system is saddle-path stable.

Example 3.

• Consider a simple di�erence equation
xt = Axt−1 + b

where A =

[
2 4
1 −1

]
is taken from Example 1 and b =

[
10
5

]
. Let x0 =

[
5
5

]
.

• Note it means

x1,t = 2x1,t−1 + 4x2,t−1 + 10

x2,t = x1,t−1 − x2,t−1 + 5

• First we �nd the eigenvalues and eigenvectos of the matrix A. From Example 1. we know that there

are two eigenvectors

[
4
1

]
(corresponding to λ1 = 3) and

[
1
−1

]
(corresponding to λ2 = −2). The

decomposition of A is then A = CΛC−1 where

Λ =

[
3 0
0 −2

]
,

C =

[
4 1
1 −1

]
,

and

C−1 =

[
0.2 0.2
0.2 −0.8

]

6



• De�ning x̄t = C−1xt gives us the following system

x̄t = Λx̄t−1 + C−1b

where

C−1b =

[
0.2 0.2
0.2 −0.8

] [
10
5

]
=

[
3
−2

]
or

x̄1,t = 3x̄1,t−1 + 3

x̄2,t = −2x̄2,t−1 − 2

• Using the method developed earlier we can solve those equations. First note that in the steady state

x̄1 = 3x̄1 + 3

x̄2 = −2x̄2 − 2

x̄1 = −3

2

x̄2 = −2

3

De�ning ˜̄xt = x̄t − x̄ we get

(˜̄x1,t + x̄1) = 3(˜̄x1,t−1 + x̄1) + 3

(˜̄x2,t + x̄2) = −2(˜̄x2,t−1 + x̄2)− 2

Canceling out the steady state

˜̄x1,t = 3˜̄x1,t−1
˜̄x2,t = −2˜̄x2,t−1

we get the following solution

˜̄x1,t = A13t

˜̄x2,t = A2(−2)t

Therefore

x̄1,t = −3

2
+A13t

x̄2,t = −2

3
+A2(−2)t

And since x0 =

[
5
5

]
we have x̄0 = C−1x0 =

[
0.2 0.2
0.2 −0.8

] [
5
5

]
=

[
2
−3

]
2 = −3

2
+A130

−3 = −2

3
+A2(−2)0

A1 = 2 +
3

2
=

7

2

A2 = −3 +
2

3
= −7

3

Substituting we get

x̄1,t = −3

2
+

7

2
3t

x̄2,t = −2

3
− 7

3
(−2)t
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• Finally, to get the solution of the initial problem we use the fact that since x̄t = C−1xt we have
xt = Cx̄t.

xt = Cx̄t =

[
4 1
1 −1

] [
− 3

2 + 7
23t

− 2
3 −

7
3 (−2)t

]
=

[
4(− 3

2 + 7
23t)− 2

3 −
7
3 (−2)t

− 3
2 + 7

23t − (− 2
3 −

7
3 (−2)t)

]
=

[
−6 + 14 · 3t − 2

3 −
7
3 (−2)t

− 3
2 + 7

23t + 2
3 + 7

3 (−2)t

]
which gives

x1,t = −20

3
+ 14 · 3t − 7

3
(−2)t

x2,t = −5

6
+

7

2
3t +

7

3
(−2)t

Di�erence equation with no initial conditions

• Consider the following equation, with no initial condition

xt+1 = ρxt

assume the model cannot explode.

• Then we have:

� ρ > 1, unique solution with xt = 0 for all t.

� ρ = 1, many solutions.

� ρ < 1, many solutions.

BK method

Blanchard-Kahn method.

• Consider a system of equations

A

[
xt+1

Etyt+1

]
= B

[
xt
Etyt

]
+ Cεt

where xt is a vector of n state variables (in case of RBC model (k, z)) and yt is a vector of m control
variables (in case of RBC model (c, l, w, r, y, x)) and εt is a vector of shocks.

• Note, we do have initial conditions for the state variables, but we do not have for the control variables.

• Assume A is non-singular (there are also methods for the case of singular A) and multiply both sides
by A−1 to get [

xt+1

Etyt+1

]
= F

[
xt
Etyt

]
+Gεt (1)

where F = A−1B and G = A−1C.

• Now use Jordan decomposition F = HΛH−1, where

Λ =


λ1 0 0 0
0 λ2 0 0

0 0
. . . 0

0 0 0 λn+m


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• Note that the eigenvalues and eigenvectors can be arranged in whatever order (as long as the kth
column of H corresponds with the kth eigenvalue which occupies the (k, k) position of Λ). It is helpful
to order the eigenvalues from smallest to largest in absolute value (note that if there are complex parts
of the eigenvalues, order them by modulus, where the modulus the square root of the sum the squared
non-complex and complex components; e.g. if y = x+ zi, then the modulus is

√
x2 + z2. If z = 0, the

modulus is just the absolute value). Therefore,

|λ1| < |λ2| < ... < |λn+m|

• The model has unique solution if the number of unstable eigenvectors (greater than 1 in absolute value)
of the system is exactly equal to the number of forward-looking (control) variables. In this case there
is one solution, the equilibrium path is unique and the system exhibits saddle-path stability.

• Note, if there are too many stable roots then we have multiple equilibria. Or, if there are too many
unstable roots, then we have no solution (paths are explosive and transversality condition is violated).

• If Blanchard-Kahn condition is satis�ed we take[
xt+1

Etyt+1

]
= HΛH−1

[
xt
yt

]
+Gεt

and we multiply it by H−1 to get

H−1
[

xt+1

Etyt+1

]
= ΛH−1

[
xt
yt

]
+H−1Gεt

or [
H11 H12

H21 H22

] [
xt+1

Etyt+1

]
=

[
Λ1 0
0 Λ2

] [
H11 H12

H21 H22

] [
xt
yt

]
+

[
H11 H12

H21 H22

]
Gεt (2)

where Λ1 consists of stable eigenvalues and Λ2 consists of unstable eigenvalues and H
−1 is respectively

partitioned, de�ne H−1 =

[
H11 H12

H21 H22

]
.

• In order to simplify notation use the following notation[
x̃t
ỹt

]
=

[
H11 H12

H21 H22

] [
xt
yt

]
(3)

[
G̃1

G̃2

]
=

[
H11 H12

H21 H22

] [
G1

G2

]
which gives us [

x̃t+1

Etỹt+1

]
=

[
Λ1 0
0 Λ2

] [
x̃t
ỹt

]
+

[
G̃1

G̃2

]
εt (4)

• First, we look at unstable part of the system

Etỹt+1 = Λ2ỹt + G̃2εt

Solving for ỹt
ỹt = Λ−12 Etỹt+1 − Λ−12 G̃2εt

Forwarding by one period
ỹt+1 = Λ−12 Et+1ỹt+2 − Λ−12 G̃2εt+1

Substituting back (note we use the law of iterative expectations EtEt+1xt+2 = Etxt+2)

ỹt = Λ−12 Et(Λ
−1
2 Et+1ỹt+2 − Λ−12 G̃2εt+1)− Λ−12 G̃2εt
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ỹt = Λ−22 Etỹt+2 − Λ−22 Et(G̃2εt+1)− Λ−12 G̃2εt

Iterating it at in�nity

ỹt = −Λ−12 G̃2εt − Λ−22 Et(G̃2εt+1)− Λ−32 Et(G̃2εt+2)− ...

using the fact that Etεt+1 = Etεt+2 = ... = 0

ỹt = −Λ−12 G̃2εt (5)

which after plugging into (2) gives us yt

ỹt = H21xt +H22yt

H22yt = ỹt −H21xt

yt = H−122 ỹt −H
−1
22 H21xt

substituting for ỹt from (5) we get

yt = −H−122 Λ−12 G̃2εt −H−122 H21xt (6)

which gives us the values of control variables for given state variables and shocks.

• Next, we can come back to the stable part of (1)

xt+1 = F11xt + F22yt +G1εt

using (3)
xt+1 = F11xt + F22(−H−122 Λ−12 G̃2εt −H−122 H21xt) +G1εt

which gives us the values of next period state variables given values of (current period) state variables
and shocks.

Summary

• A little bit about solving di�erence equations.

• Blanchard-Kahn method.
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