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Intro

Method for solving linear rational expectations models.
First eigenvalues.

Solving linear difference equations.

Solving system of linear difference equations.

Blanchard-Kahn method

Matrix algebra

Eigenvectors and Eigenvalues

Consider an n X n square matrix A.

A is an eigenvalue of A and z is an eigenvector of A if they satisfy the equation
Ar = dr
where x is a non-zero vector.

To find an eigenvalues we can rewrite the above equation

Ax —dx =
(A=XDHz = 0
where [ is an identity matrix.

If [A — M| is invertible, then x = [A — AI]™! - 0 is a vector of zeros. To have a non-zero solution for =
a matrix [A — AI] needs to be non-invertible, i.e. singular.

For [A — AI] to be non-invertible it needs to have a zero determinant (a square matrix is singular if
and only if its determinant is 0)
det(A—AI) =0

and we can use this formula to find eigenvalues.

Diagonalization (Jordan decomposition). Eigenvalues and eigenvectors can be used to diagonalize a
matrix. An n xn matrix A is diagonalizable if we can express the matrix as the product of an invertible
square matrix C' and a diagonal matrix so that A = CAC~!, where

— A is a diagonal matrix with the eigenvalues of A on the diagonal.

— the ith column of matrix C' is an eigenvector corresponding to the ith eigenvalue of A.

No, an n X n matrix A is diagonalizable if and only if its eigenvectors are linearly independent.



Example 1.

e Consider a matrix A = [1 _41 },then
(2 4 1 0
A=A = ! 1]‘%01}
(2 4] [xo0
I S| 0 A
(2= 4
1 -1

det(A—X)=2-XN)(-1-X)—-4 = 0
—2-20+A+X -4 = 0
M-A-6 = 0
A=3)(A+2) = 0
Therefore we have two eigenvalues A\; = 3 and Ay = —2.

e Since eigenvectors are the solution to [A—AI]x = 0 and we have to eigenvalues we have to eigenvectors.
Start with \; =3

2—A 4 IR - 0
1 —].—>\_ _CEQ_ o
2—-3 4 1 - 0
1 7173_ | T2 |
-1 4 [ x1 ] .
[ 1 —4_ _172_ =0
So
—x1 + 4o 0
IL’174£L'2 = 0
. . 4a
So the eigenvector is N
e And for Ay = -2
2—A 4 1 -0
1 —1-=2A T2 B
4 4 T o
iln] o
xr1 + 2o 0
4r1 +4x2, = 0

So the eigenvector is { _aa ]

e We are going to chose an eigenvectors such that one of the terms is set to 1, therefore we get two

4 ] (corresponding to A\; = 3) and [ —11 } (corresponding to Ay = —2).

eigenvectors [ 1



e For a matix A = ? 41 } with eigenvalues A\; = 3 and A2 = —2 and eigenvectors [ 411 ] (corre-

sponding to A; = 3) and [ ] (corresponding to Ay = —2) we have

3 0
=10 5
and
4 1
o= 4]
we have
1 0.2 0.2
C { 0.2 -0.8 }
e Note
1 [ 4 1 3 0 02 0.2
CAC - _1—1}[0 —2][0.2 —0.8}
_ (12 —2 02 0.2
- | 3 2 0.2 -0.8

_ [12:02-2-02 12-02+2-0.8
3:02+2-02 3-02-2-0.8

2 4
Tl -1

= A

Difference equations
Solution method

e Consider a simple difference equation
= w1+

e First we find the steady state

|
™

r — Aax

e Let Z; = xy — x (which implies z; =  + #;) then

x4+ 3 —alr+ 1) — B

Ty +ar_p =
Guess
Ty = AN
Substituting back
-%t — Oé.it_l = 0
AN — AN = 0
A—a = 0
A «
and
fi’t = AOlt



Therefore

xy = x + Aot
where z = % To find A we need at least one value of x;, usually in economic applications we know
the initial conditions zy (sometimes it is also a terminal condition), then
g = 7/6 + Aa®
1-«
g
A = zg— ——
T 1w
e So the solution is
B ¢
€T = o — «
K l-«a + (@ 1-— a)
T, = xoal + L(1 —at)
11—«
1-af
e = zood 4+
1l-«a

Note that method works for |a| # 1.

Stability
e The above equation is stable when |a| < 1, in which case

1—at): 6]

1—« 1—«

lim z; = lim (zga’ + B
t—o00 t—o00
Ty = oy + 3

e The above equation is unstable when |a| > 1, in which case (technically speaking sometimes there may
be no limit becasue one subsequence converges to +o0o and the other to —oo)

lim @, = lim (o0’ + B2
Jim 1 = Jim (zoa’ + 5

) =400 or — o0

Example 2.
e Consider a simple difference equation
Ty —axr_1 — 100 =0
i.e. 5 =100.
e First we find the steady state

r—oar = 100
100

xr =

e Let &y = x4 — x (which implies z; = z + ;) then

T+ 2y —alz+ &—1) — 100

Ty +aty_y =

Guess
Ty = AN



Substituting back

:Et — Ot.i‘t,1 =
AN — a AN =
A—

o o o o

and
.’ft = AOét

Therefore

xy = x + Aot
where z = %. To find A we need at least one value of x;, usually in economic applications we know
the initial conditions xy (sometimes it is also a terminal condition). Suppose xg = 100 then

100
9 =100 = —— + Aa®
1 —«
1 _
A = 100— 220 g0
l—« 11—«
Ty = ot + —11103:
o Consider different values of «:
— o = 3 then
100 100
= ]_ RN t
Ty 00 + 1-3 1_3 3
x; = 50+50-3"

unstable, not oscillating (note z; > x for all ¢ and lim;_, o, ; = 00)

_1
— a = 3, then

100 _ 100 1y
1-05 1-05 ‘2

300 — 300 - (%)t

Tt

stable, not oscillating (note z; > «x for all ¢ and lim;_, ., z; = x = 300)

__1
— a = —3, then

100 100 1.¢
1—(=05) 1—(-05) (—3)

166.67 — 66.7 - (— %)2

Tt

stable, oscillating (note if x; > x then x411 < z and lim;_, o, 2y = x = 166, 67)

— a = —3, then
100 100 t
= 100 — (=3
ot T T3 (=3)
r, = 125—25(-3)
unstable, oscillating (note if ; > x then x;411 < @ and limy_, o z9 = —00 and limy_, oo T2t11 = 00).

e Stability can be analyzed in phase diagrams.



System of difference equations
Solution method
e Consider a system of difference equations
e = Axi_1+Db
where A is n X n matrix and b is an n x 1 vector. We assume that A is diagonalizable.
e Since A is diagonalizable we can express it as A = CAC™!.
2 =CAC Yoy 1 +D
Multiplying both sides by C~! we get

Clay C'CAC 'z 1+ C M
C_ll‘t = AC_lxt_l + C_lb

Define z; = C~'x; we get
Tt =AT_1 +C '

Since A is diagonal this becomes just a system of separate (independent) equations.
e To find the steady state of the system z; = Azy_1 + b set x; = 24,1 = x, which gives z = [[ — A]~!b.
e The stability of the system depends on the eigenvalues.

e If all the eigenvalues are less than 1 in absolute value then the system is stable. If all the eigenvalues
are greater than 1 in absolute value then the system is unstable. If at least one eigenvalue is less than
1 in absolute value the system is saddle-path stable.

Example 3.

e Consider a simple difference equation

Ty = AZL’t_l + b
where A = { ? _41 ] is taken from Example 1 and b = { 10 ] Let zo = [ g }

5

e Note it means

T1y = 2x141+4x25 1+ 10

T1t—1 — T2,4—1 + D

T2t

e First we find the eigenvalues and eigenvectos of the matrix A. From Example 1. we know that there
are two eigenvectors { le } (corresponding to A; = 3) and [ _11 } (corresponding to Ao = —2). The
decomposition of A is then A = CAC~! where

(3 0
=5 5]
(4 1
c=11 4]
and _
1 _ 102 02
¢ __0.2 —0.8}



o Defining z, = C~'x, gives us the following system

Tt =AT_1 +C '

where
. [o2 02 1[10] [ 3
¢ b‘[oz —08 || 5 | 7| -2
or
Ty = 3T1y—1+3
Toy = —2Toy_1—2

e Using the method developed earlier we can solve those equations. First note that in the steady state

T1 = 3T1+3
To = —2Ty—2
_ 3
T = —=
! 2
_ 2
To — =
? 3
Defining Z; = 7; — T we get
(Z1+71) = 3(X14-1+71)+3
(Tap+Ta) = —2(Tap-1+T2)—2
Canceling out the steady state
Tig = 3T14-1
oy = —2Ta4
we get the following solution
L%Lt = A13t
oy = Ay(-2)
Therefore
3
Tie = 5 A3t
2 t
To —3 + As(—2)
. |5 1|02 02 51 | 2
And since zg = [ 5 } we have Tg = C " xp = { 0.2 —0.8} [5 } = [ _3}
3
2 = —S+ A3
5 + A3
2 0
-3 = —-+ A2(-2)
3
3 7
A = 2 _ = —
1 + 5 5
2 7
Ay = -34+4-=—2
2 + 3 3
Substituting we get
3 7
_ - 2 7315
Tt 2" 2
2 7
_ _ _2_ 19 t
T2t 3 3( )



e Finally, to get the solution of the initial problem we use the fact that since z; = C'~'x; we have
Ty = Oft

which gives

20 7
= —= +14-3" - -(-2)
Tt 5t 3( )
5 7 7
— _ v 73t (=2 t
Toy 6+2 + 3( )

Difference equation with no initial conditions
e Consider the following equation, with no initial condition
Tt41 = PTt
assume the model cannot explode.
e Then we have:

— p > 1, unique solution with x; = 0 for all ¢.
— p =1, many solutions.

— p < 1, many solutions.

BK method
Blanchard-Kahn method.

e Consider a system of equations

Ti41 Tt
A =B C
[ Eiyi41 } [ Eiy, } e

where x; is a vector of n state variables (in case of RBC model (k, z)) and y; is a vector of m control
variables (in case of RBC model (¢, 1, w,r,y,x)) and € is a vector of shocks.
e Note, we do have initial conditions for the state variables, but we do not have for the control variables.
e Assume A is non-singular (there are also methods for the case of singular A) and multiply both sides
by A7! to get
Ti41 Tt
=F + Ge 1
{ Evyi41 } [ Eiy } ! (1)
where FF' = A7'B and G = A~!C.

e Now use Jordan decomposition F' = HAH !, where



Note that the eigenvalues and eigenvectors can be arranged in whatever order (as long as the kth
column of H corresponds with the kth eigenvalue which occupies the (k, k) position of A). It is helpful
to order the eigenvalues from smallest to largest in absolute value (note that if there are complex parts
of the eigenvalues, order them by modulus, where the modulus the square root of the sum the squared
non-complex and complex components; e.g. if y = x + zi, then the modulus is vz2 + 22. If 2 = 0, the
modulus is just the absolute value). Therefore,

A1l < [A2] < oo < | Ansml

The model has unique solution if the number of unstable eigenvectors (greater than 1 in absolute value)
of the system is exactly equal to the number of forward-looking (control) variables. In this case there
is one solution, the equilibrium path is unique and the system exhibits saddle-path stability.

Note, if there are too many stable roots then we have multiple equilibria. Or, if there are too many
unstable roots, then we have no solution (paths are explosive and transversality condition is violated).

If Blanchard-Kahn condition is satisfied we take

[ Ti+1 } = HAH ! [ o } + Gey
By Yt

and we multiply it by H~! to get

g1 [ ;t+l ] — AH! [ Tt ] +H_1G5t
tYt+1 Yt

or

Hyi Hypo Tiy1 _ A O Hyy Hpp Ty
Hy  Ha Eiyi 11 0 A Hyy Hyp Yt
Hyy Hyp
+{ i HQQ]th 2)

where A; consists of stable eigenvalues and A, consists of unstable eigenvalues and H~! is respectively

Hy, H
titioned, define H—1 = oz }
partitione ernne |: H21 H22

In order to simplify notation use the following notation

Ty | _ | Hu Hip Ty (3)
Ut Hyy  Hoo Yt
C}H _ | Hu Hi Gy
Ga Hy  Hy Go
which gives us ~
.’i‘H_] Al 0 jijt Gl
. — . ~ 4
|:Etyt+1] {0 A2}{yt]+[G2]€t @)

First, we look at unstable part of the system
Eyfjer1 = Aafjy + Gagy

Solving for g, ~
Gt = Ay Eyfiesr — Ay ' Gogy
Forwarding by one period
i1 = Ay Erafers — Ay 'Gogrp

Substituting back (note we use the law of iterative expectations EyFy1xir0 = Erxiio)

i = A E(A  Er i — Ay ' Gogr) — Ay ' Gogy



Gt = Ay Eyfieye — A3 °Ey(Gagri1) — Ay ' Gaey
Iterating it at infinity
:l.jt = —A;légft — AQ_QEt(é2€t+1) — A2_3Et(é2€t+2) — ..
using the fact that Et5t+1 = Et€t+2 =..=0
G = —A; " Gaey (5)
which after plugging into (2) gives us y;
gr = Ho1xy + Hooyy
Haoyr = g — Horzy
ye = Hyy' G — Hop' Hory
substituting for g; from (5) we get
yr = —Hyy' Ay 'Goey — Hyy' Hoywy (6)
which gives us the values of control variables for given state variables and shocks.

e Next, we can come back to the stable part of (1)

Tep1 = Frize + Fooyr + Gret

using (3) B
Tep1 = Frizy + Foo(—Hyy' Ay ' Goey — Hyy' Hoyay) + Ghgy

which gives us the values of next period state variables given values of (current period) state variables
and shocks.

Summary

e A little bit about solving difference equations.

e Blanchard-Kahn method.
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